Improved Moves for Truncated Convex Models

نویسندگان

  • M. Pawan Kumar
  • Philip H. S. Torr
چکیده

We consider the problem of obtaining the approximate maximum a posteriori estimate of a discrete random field characterized by pairwise potentials that form a truncated convex model. For this problem, we propose an improved st-MINCUT based move making algorithm. Unlike previous move making approaches, which either provide a loose bound or no bound on the quality of the solution (in terms of the corresponding Gibbs energy), our algorithm achieves the same guarantees as the standard linear programming (LP) relaxation. Compared to previous approaches based on the LP relaxation, e.g. interior-point algorithms or treereweighted message passing (TRW), our method is faster as it uses only the efficient st-MINCUT algorithm in its design. Furthermore, it directly provides us with a primal solution (unlike TRW and other related methods which solve the dual of the LP). We demonstrate the effectiveness of the proposed approach on both synthetic and standard real data problems. Our analysis also opens up an interesting question regarding the relationship between move making algorithms (such as α-expansion and the algorithms presented in this paper) and the randomized rounding schemes used with convex relaxations. We believe that further explorations in this direction would help design efficient algorithms for more complex relaxations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Solver for Truncated-Convex Priors: Quantized-Convex Split Moves

This paper addresses the problem of minimizing multilabel energies with truncated convex priors. Such priors are known to be useful but difficult and slow to optimize because they are not convex. We propose two novel classes of binary Graph-Cuts (GC) moves, namely the convex move and the quantized move. The moves are complementary. To significantly improve efficiency, the label range is divided...

متن کامل

Truncated Max-of-Convex Models Technical Report

Truncated convex models (TCM) are a special case of pairwise random fields that have been widely used in computer vision. However, by restricting the order of the potentials to be at most two, they fail to capture useful image statistics. We propose a natural generalization of TCM to high-order random fields, which we call truncated max-of-convex models (TMCM). The energy function of TMCM consi...

متن کامل

Triangle-Free Triangulations, Hyperplane Arrangements and Shifted Tableaux

Flips of diagonals in colored triangle-free triangulations of a convex polygon are interpreted as moves between two adjacent chambers in a certain graphic hyperplane arrangement. Properties of geodesics in the associated flip graph are deduced. In particular, it is shown that: (1) every diagonal is flipped exactly once in a geodesic between distinguished pairs of antipodes; (2) the number of ge...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2008